Additive Fertigung (ADD)
Additive Manufacturing (ADD)
In recent years, additive manufacturing (AM) has greatly expanded the possibility of fabrication. Components that are difficult to manufacture using conventional methods can now be produced within a few hours. In process engineering in particular, this makes it possible to create new apparatuses that are optimally adapted to the desired function. At IMVT, AM is being researched for the following areas:
- separation technology
- reaction engineering
- heat transfer
The advantages of AM in process engineering are worked out by the following methods:
- Adaptation of AM processes
- Design for AM" construction methods
- Simulation-based optimization
For the research projects we have the following printers at our disposal:
In this video, one of our PhD students presents the basic principles of these manufacturing processes:
[Note: You are forwarded to the following website: https://youtu.be/9NeYRdtLotE]
Team members:
Name | Tätigkeit |
Christoph Klahn | Group lead |
Fabian Grinschek | PhD |
David Metzger | PhD |
Dongxu Xie | PhD |
Manuel Hofheinz | Manufacturing |
Fabian Rupp | Manufacturing |
Elektromagnetische Aktivierung (EEX)
Electromagnetic Activation (EEX)
As part of the energy transition, an increasing availability of renewable power is expected and therefore activating thermodynamically uphill conversions for synthesis of materials and fuels is a promising approach for the use of fluctuating surplus energy.
Our team focuses on the harvesting and integration of renewable energy with catalysis for the production and conversion of energy carriers. Using electromagnetic energy as the interface between chemistry, catalysis, thermodynamics and renewable resources, we develop and demonstrate novel conversion routes. We enjoy complementing our work with numerical tools looking to obtain insights that allow the development and design of novel reaction devices and processes.
Our research overarches:
- Energy Storage. Hydrogen storage and release. Our patented technology for the release of stored hydrogen with microwaves is one example.
- Renewable energy harvesting. Conceptualization, design and development of devices that use green electricity or solar energy for catalytic transformations. Our plasmonic microreactor is the first continuous photoreactor capable of working under supercritical CO2 pressures (up to 120 bar).
- Plasma Catalysis. As part of the KIT-PlasmaLab (collaboration with IHM) we focus on the conversion of abundant and stable molecules such as water, CO2, Nitrogen and methane into useful products.
- Novel catalytic structures. The efficient use of the electrons activated by electromagnetism requires of materials with tuneable properties. As an example in visual wavelengths, we were the first ones producing plasmonic catalysts based on transparent silica aerogels.
Füsslige und disperse Systeme (LIQ)
Liquid and Dispersed Systems (LIQ)
The group Flüssige u. disperse Systeme (LIQ)
is concerned with the chemical process engineering of liquid phase reactions.
One branch of work is the development of highly effective micro structured mixers and their experimental characterisation. The Interpretation of the experimental results is done in close cooperation with CFD-Team, which supplies the fluid dynamic expertise.
Microstructured devices are also employed for emulsification processes and are characterised in that respect.
Fast and exothermic reactions in liquid phase are a field for which microstructured devices can be applied with good success. The selectivity often depends on both, local mixing structure and temperature during reaction. By the combination of both, excellent mass and heat transfer, it is possible to obtain very high selectivities for fast and exothermic reactions, which can't be performed with the same result in conventional reactors.
It's our special interest to apply the investigated processes and devices into industrial practice.
Ongoing Projects:
- Aif-Project multi fuel gas generator
- BMWi-Project Mi2pro
- TT-Projects with Cargill
- Industry cooperation with ESIM and BASF
Finished Projects:
Katalytische aktive Schichten (CAT)
Catalytically Active Coatings
The group “Catalytically Active Coatings” (CCT) is working on concepts and methods for the preparation and characterization of hierarchically structured catalysts and their implementation in different reactor- and reaction-systems. The key area of investigation is the precise and homogeneous deposition of highly active catalyst layers e.g. within microstructured reactors. Here, the preparative works are supported by simulation enabling a rational design of the catalysts/catalyst layers and reactors. The focus of the group is on novel catalyst systems and concepts such as bifunctional core-shell catalyst, intermetallic compounds and integrated systems enabling in-situ product recovery using membrane technologies. The CCT group is thematically and organizationally located between the Institute for Micro Process Engineering (IMVT) and the Institute for Catalyst Research and Technology (IKFT), respectively.
Applications
-
Single-stage dimethyl ether synthesis
-
Methane steam reforming with integrated hydrogen separation
-
Selective hydrogenation of acetylene
-
Photocatalytic degredation of micropolutants in aqueous media
Preperative methods
-
Flame spray pyrolysis for nanoscopic catalyst preparation
-
Ink-jet printing
-
Sputtering (DC magnetron)
-
PVD/CVD
-
Dip coating and screen printing
Characterization methods
-
Optical methods for the analysis of surface morphology and composition (SEM, optical 3D-profilometry, electron probe micro analysis combined with WDS)
-
Chemiesorption (TPR/TPD) and TPO
-
Isothermal nitrogen physisorption
-
Langatat crystal microbalance (physisorption of different species at elevated pressure and temperature)
-
Kinetic studies and process validation (µ-Berty and microstructured reactors)
-
…
Kontinuierliche Elektrosynthese (CES)
Continuous electrosynthesis (CES)
Electrocatalytic production of sustainable fuels and chemicals
The group "Continuous Electrosynthesis" addresses the electrification of chemical reactions to produce valuable, top-quality chemicals such as fuels and basic chemicals for chemical and pharmaceutical industries. Electrochemical processes such as electrolysis and electrodialysis will be examined and developed further to design efficient and sustainable processes.
Projects at CES the projects cover the synthesis and examine new materials, specially through highly automated screening methods, manufacturing the components for electrochemical cells and testing these cells in electrochemical reactors both in lab-scale (up to square centimeter) and pilot-scale (up to square meter).
Our projects contribute to process development and intensification for power-to-x technologies and lay the foundation for development of pilot and demonstration plants.
Contact Peter Holtappels
Sustainable Photochemistry and Photocatalysis for Solar Energy Conversion
Photocatalytic reforming for hydrogen evolution is a sustainable process to convert solar energy into carbon-free clean fuel. We are focusing on developing and investigating highly efficient photocatalytic (photoelectrocatalytic) platforms for the production of fuels and renewable feedstocks.
- Photocatalytic CO2 Reduction in a micro flow reactor
- Enhanced Hydrogen Evolution from Photocatalytic Water splitting (BMBF project FPortSolH2 relates with “Solar Hydrogen”)
Contact: Jinju Zhang
Mikroapparatebau (FAB)
Mikroapparatebau (FAB)
Die Gruppe Mikroapparatebau (FAB) befasst sich mit dem Entwurf, der Auslegung, Konstruktion, Fertigung und Validierung von komplexen Mikrostrukturapparaten vom Labormaßstab bis hin zu Prototypen für den industriellen Einsatz in anspruchsvollen Anwendungen. Weiterhin werden Mikrostrukturierungsverfahren optimiert und neu entwickelt. Die Gruppe besteht zurzeit aus 12 Mitarbeitern und beinhaltet die Arbeitsbereiche Konstruktion, Mikrofertigung, 3D-Druck und Qualitätskontrolle. Die Dienstleistungseinheit Berufliche Ausbildung (BEA) wird bei der Ausbildung in den Bereichen Produktdesigner/in und Technische/r Industriemechaniker/in unterstützt.
Der Bereich Konstruktion ist für die Auslegung und Konstruktion von Mikrostrukturapparaten nach Druckgeräterichtlinie und AD 2000 Regelwerk verantwortlich.
Im Technikum Mikrofertigung werden Mikrostrukturapparate vom Labormodul bis hin zum Produktionsmaßstab gefertigt. Weiterhin können mit Hilfe von 3D-Druckverfahren (additive Fertigung) kleine Bauteile sowie Musterteile und Prototypen hergestellt werden.
Zur Qualitätskontrolle der Mikrostrukturapparate stehen verschiedene Teststände zur Verfügung.
Abb. 1: Produktionsreaktor mit integrierten, gekühlten Mikromischern für industriellen Durchsatz von >1 t/h, seit 2004 im Einsatz
Abb. 2: Additiv gefertigtes Strömungsleitelement
Werkstofftechnologie (MAT)
Werkstofftechnologie (MAT)
Die Gruppe Werkstofftechnologie (MAT) leistet Querschnittsaufgaben zur Herstellung mikroverfahrenstechnischer Apparate. Es erfolgen werkstofftechnische und anwendungsspezifische Beratung zu Werkstoffeinsatz und Fertigungsaspekten für andere Arbeitsgruppen.
Je nach spezifischem Anwendungsfall werden neue geeignete Werkstoffe ausgewählt.
Für verschiedene Werkstoffe werden die Fügeparameter für das Diffusionsschweißen, angepasst an das Design, optimiert. Durch spezielle Prozessführung wird ein verformungsarmes bzw. verformungskontrolliertes Fügen mikroverfahrenstechnischer Bauteile sichergestellt.
Mittels Laserschneiden können komplex geformte Blechzuschnitte oder Redesigns in verschiedensten Metallen und Legierungen in kürzester Zeit in-house realisiert werden.
Ein komplett ausgestattetes Metallografielabor erlaubt eine schnelle Präparation von Proben für lichtmikroskopische und Mikrosonden-Untersuchungen. Neben zwei Trennmaschinen für verschieden große Proben stehen eine Schleif- und Poliermaschine sowie Möglichkeiten zum chemischen Ätzen bereit.
Mikroskopische Untersuchungen erfolgen mit verschiedenen Lichtmikroskopen und einem Rasterelektronenmikroskop JEOL JSM 6300.
Eine Feldemissions-Mikrosonde JEOL JXA 8530F mit EDX und fünf Spektrometern erlaubt die hochgenaue Bestimmung der chemischen Zusammensetzungen im Mikrobereich sowie von Elementverteilungen auch für leichte Elemente.
Mitarbeiter, spezifische Aufgabenfelder
- Dr.-Ing. Thomas Gietzelt (Gruppenleiter, Laserschweißen, Diffusionsschweißen)
- Dipl.-Ing. Uta Gerhards (Mikrosonde, REM, WDX)
- Florian Messerschmidt (Mikrosonde, REM, Metallografie, Diffusionsschweißen)
- Torsten Wunsch (Laserschneiden, Laserschweißen, Diffusionsschweißen)
- Volker Toth (Diffusionsschweißen, Laserschneiden, Laserschweißen)
Ausstattung
- PVD-Beschichtungsanlage für REM-Proben (Kohlenstoff und Platin)
- Mikrosonde JEOL JXA 8530F mit Feldemissionskathode (fünf Spektrometer, insgesamt 12 Analysekristalle, Elementbestimmung ab Ordnungszahl 4 (Be), LN-freies EDX)
- Rasterelektronenmikroskop JEOL 6300 mit LN-freiem EDX
- Stereo- und Lichtmikroskop mit Bilderfassungs- & Archivierungssoftware
- Laserschweiß- und -schneidmaschine TruLaser Cell 3010 mit 3 kW Scheibenlaser und 500 W Faserlaser
- Drei verschiedene Diffusionsschweißöfen, Kraftbereich 20kN – 2MN
- Trennmaschine ATM Brillant 250, Trennleistung bis Probendurchmesser 100 mm
- Präzisionstrennmaschine ATM Brillant 221
- Schleif- & Poliergerät ATM Saphir 550
- Vakuumeinbettvorrichtung
- Eigenbau-Elektropolieranlage zur Gratentfernung an Mikrostrukturen aus Edelstählen, Nickelbasislegierungen, Kupferbasiswerkstoffen
- Vakuumtrockenschrank bis 200°C